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A model originally developed to characterize the extension and breakage of interatomic 
bonds at the tip of a propagating brittle crack is used to describe crack extension through 
a crystalline lattice by kink motion. Magnitudes of the effective kink barriers against 
crack extension and healing are computed as a function of lattice strain and are found 
to exhibit a marked asymmetry, relative to each other, in their strain dependences. In 
addition, decohesion effects associated with the presence of certain foreign atomic species 
are simulated, and it is shown that, for a broad range of relative bond-weakening, the kink 
barriers against both crack extension and healing are completely eliminated. 

1. Introduction 
Beginning with the work of Hsieh and Thomson 
[1], a number of simulations have been developed 
to describe brittle fracture in terms of atomic- 
bond breaking at the crack tip. These simulations 
are of two general types that can be regarded as 
two- or three-dimensional models. 

In the two-dimensional case, a planar crack 
with a straight tip lying along a symmetry direction 
is propagated uniformly along its length. Periodic 
boundary conditions can then be employed along 
the crack-tip direction, and a large cylinder of 
atoms around the crack tip can be atomistically 
simulated, using pair potentials, with relatively few 
total atoms. In addition to the reversible work of 
separation (the surface energy of the created 
surfaces), a periodic irreversible energy barrier is 
encountered which is called the lattice-trapping 
barrier (LTB) [1]. Estimates of the magnitude of  
the LTB, based on such calculations, range from 
15 per cent of the reversible work, for silicon in a 
0 K (i.e., static) calculation [2], to about zero per 
cent for a Lennard-Jones solid in a dynamic, 
adiabatic simulation [3], with the temperature 
rising to about half the absolute melting point. 

In the three-dimensional case, however, it is 
expected that the LTB is surmounted by the 
creation of double kinks [4, 5] analogous to those 
formed in dislocation motion over the Peierls 
barrier [6]. The energy required to form the 
double kinks must be less than that required to 
surmount the LTB, so that the effective LTB is 
less in the three-dimensional case. Indeed, for the 
low-driving-force, nearly reversible case, the lateral 
motion of kinks along the crack tip is expected to 
provide the activation barrier for the cracking 
process [4]. Preliminary calculations for silicon 
[4] and iron [7] do indicate that the effective LTB 
is nearly zero when a set of kinks is present at the 
crack tip. However, since the boundary conditions 
are not well defined for the kinked crack, atomic 
calculations of an extensive configuration would be 
difficult. In addition, pair potentials are expected 
to be less accurate for a complex configuration 
such as a kink. Consequently, a more empirical 
description is representative of the present state of 
understanding and should be valuable in providing 
insight into the kink-propagation process. 

The features required of a model for a kink in a 
crack are (a) that it represents local bond breaking 
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and (b)that  it incorporates the compliance or 
constraint of the surrounding array of atoms, an 
effect which invariably lowers the energy for bond 
breaking relative to that for a pair of isolated 
atoms. Such a model was originally proposed by 
Thomson, Hsieh, and Rana [8] and was also treated 
by Fuller and co-workers [9-12] .  They represented 
a Mode I crack by two chains of atoms. Adjacent 
atoms of the same chain were connected by 
flexible bonds, and the two chains were connected 
by stretchable parallel bonds between atoms of the 
different chains. The stiffness of the flexible bonds 
reflected the lattice compliance, and a breaking 
stretchable bond represented kink motion. The 
model was also used t6 describe extrinsic or 
chemically-assisted bond rupture [ 11, 12]. 

An alternate model for bond breaking in kink 
propagation is that suggested by Hirth [13], 
consisting of the extension of a linear four-atom 
chain, with adjacent atoms connected by non- 
linear bonds. The central bond is the one that 
breaks upon extension, with the two outer bonds 
representing the lattice compliance. An advantage 
associated with this simple model is that it can be 
treated in detail in an analytical manner. The 
model is reconsidered here, in a 0 K simulation, 
and some new results are obtained relative to the 
kink barrier for crack propagation. Effects of 
solute atoms on bond breaking are included in 
these studies in an essentially empirical manner. 
As in the original study by Hirth [13], the non- 
linear bonds are represented by Morse potentials, 
the Morse function having some physical basis as 
an interatomic pair potential [14, 15]. 

2. Development of the model 
The basic model consists of a system of four 
point-mass atoms, arranged along a straight line 
by identical Morse-function "springs", as illus- 
trated schematically in Fig. 1. Interactions beyond 
those involving first-nearest neighbours are not 
considered. The potential energy of interaction, v, 
associated with each of the springs is thus of the 
form 

v(D , o~, re; r) = O {exp [-- 2a(r --re) ] 

- -2  exp [--a(r --re)l}, (1) 

where D, a, and r e are the usual Morse-function 
parameters and r is the instantaneous length of a 
given spring (i.e, the distance between the two 
associated atoms). Assumptions relative to the 
model are that all three springs have the same set 
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Figure 1 Schematic illustration of linear chain of four 
point-mass atoms that interact via Morse-function 
"springs". 

of  values for a and re, that the two outer springs 
have the same value of D, but that the inner spring 
has value kD for this parameter, where k is a 
numerical parameter describing the strength of the 
inner bond relative to that of each of the outer 
bonds. We shall consider values of k within the 
range 0 < k ~ 1. 

Let us now consider what happens to the con- 
figuration of atoms as the length of the four.atom 
chain is altered as a result of the application of 
external forces, equal in magnitude and opposite 
in direction to the two end atoms. The overall 
length of the system, R, is supposed to change at 
a slow enough rate to ensure that the four-atom 
system remains in a state of quasiequifibrium, i.e., 
one of minimum net potential energy. 

Let rl  and r2 be the lengths of the two outer 
springs, in which case the length of the inner 
spring must be R - - r l - - r ~  (see Fig. 1). It then 
follows, from Equation 1, that the net potential 
energy of the system, U(rl,r2), is, for a given 
value of R, 

U(rl,r2) = v(D,a,  re;rl) + v(D,a,  re;r2) 

+ v(kD,~ ,re;R --r l  --r2). (2) 

Now, consider some features of the variation of 
the function U(rl,r2) with the co-ordinates rl 
and r2. Of particular interest is the function 
U(r, r), which is the potential energy that exists 
along the straight line r l = r ~ = r  in a two- 
dimensional rl--r2 space. Those configurations for 
which r~ 4 = r2 are asymmetric relative to the centre 
of the four-atom chain, and are not dealt with 
here in detail. Consider, however, the manner in 
which U(r, r) varies along a direction perpendicular 
to this line. This is conducted by evaluating the 
function U(r + ~r ,r - -Sr) ,  where 8r is a small 
increment of  r. Thus, combining Equations 1 and 
2, and expanding the resultant expression for 
U(rt,r2) in a Taylor series about rl = r ,  and 
r2 = r, taking the increment o f r t  to befi t  and that 
of r2 to be --6r ,  we obtain, through terms of 
fourth order in 8r, 
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U(r + 8 r , r - S r )  = or(r, r) + (D/y~)[2(2 -yXa~r) 2 

+ ~ (8 -y ) ( a$ r )  4 + . . . ] ,  (3) 

where 
y -=- exp [ot(r --re)].  (4) 

Equation 3 shows that, provided the value of y 
does not exceed 2, the potential energy increases 
about the line rl = r2, so that the system would 
tend, for this range of y ,  to remain situated on this 
line once it was placed thereon. If, however,y > 2, 
the system is unstable with respect to deviations 
from the line rl =r2  and would spontaneously 
progress to an equilibrium configuration for which 
rl  =/= r2. 

To illustrate the behaviour of  the system within 
the range y > 2, consider the following example. 
Let the system be in a configuration such that 
r~ = r2, withy > 2. Now let the position of one of 
the two inner atoms fluctuate slightly. That fluctu- 
ation would then spontaneously develop, and an 
asymmetric equilibrium configuration would finally 
be reached in which the bond between that atom 
and its neighbouring end atom would be elongated 
or shortened, relative to its initial length, depend- 
ing upon whether the initial fluctuation has been, 
respectively, a bond extension or bond shortening. 
Of course, the other two bonds would, in general, 
also change in length in the process, although the 
details of these changes are not discussed here. 

The analysis that follows is restricted to the 
conditions ra =r2  = r  and y ~<2, although some 
properties of the more general case are discussed 
in Appendix 1, together with application to a 
specific example. For the case of interest here, 
however, Equation 2 becomes 

U = 2v(D,  a,  re ; r) + v(kD,  a,  re ; R -- 2r), (5) 

where U =- U(r, r). y is always a positive number. 
The problem now is to determine the values of r, 
for given R, for which U is stationary. 

Toward this end, Equations 1, 2, 4 and 5 are 
used to show that 

f -=- O(B y ) -2 [ k ( y  6 --  2By 4) + 2/12(1 -- 2y)], 

(6) 
where 

B -= exp (3r/e) (7) 
with 

= are (8) 

e -~ (R -- 3re)/(3re). (9) 

In addition, note that Equations 4 and 8 can be 
combined to yield 

Hence, the 
Equations 6 

and 

y = exp (r/Z), (10) 
where 

Z =-- ( r - - re )]r  e. (11) 

It is clear that Z is simply the strain associated 
with each of the two outer inter-atomic bonds. 
Likewise, e is the strain associated with the entire 
four-atom chain. In addition, the variable y is a 
direct measure of the strain Z ,  since y increases 
monotonically with Z (after Equation 10); similar 
reasoning can be used to conclude that B is a 
measure of the net strain, e, of the four-atom 
chain (after Equation 7). In summary, Equations 6 
to 11 comprise a convenient description of U in 
terms of  unitless quantities y ,  B,  r/, Z ,  and e. 

It should be noted that the smallest value that 
y can have, Ymin, is that for which r = 0, which 
corresponds to complete compression of the two 
outer bonds, and which, from Equations 10 and 
11, is seen to be y = exp (-- 7/). Moreover, assuming 
that spatial order among the four atoms is main- 
tained, the largest possible value, y~ that y 
can have is that for which r = R / 2 ,  which corre- 
sponds to complete compression of the inner bond, 
and can be shown, using Equations 7, 9, 10 and 
11, to be yOm~ x) = B 1/2 exp (r//2). 

As indicated above, values o fy  for whichy > 2 
are not of interest. However, the allowable range 
for y can be restricted even further. As demon- 
strated in Appendix 2 (see Equation A8), real 
roots for y lying between zero and 2 can actually 
only exist within the subrange O<y<<.y(2~), where 
y(2m~),~ = (2/k)[1 -- (1 -- k)1/2]. Clearly, if k = 1, 
then y(2r~) = 2, but for 0 < k < 1, the correspond- 

- (2) ing range for y(2~x) is 1 <Ymax < 2. 
Now, for given e value (i.e., given R value), 

values of Z are desired for which U is stationary. 
following derivatives, obtained using 
and 10, are needed: 

4Dr/ [k(y 6 _ B y 4 )  +BZ(y _ 1)] (12) 

= 4 D ( ~ y ) 2 1 2 k ( 2 y 6 - - B y 4 ) + B 2 ( 2 - - Y ) } -  

(13) 

Consequently, the search for stationary values 
of U, for given a e value, is seen, from Equation 
12, to be reduced to seeking physically acceptable 
roots of the following polynomial of degree six: 

f ( y )  =- k (y  6 - - B y  4) + B 2 ( y -  1) = 0. (14) 
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Equation 13 can be used to help assess the nature 
of any stationary points, that is, to determine 
whether a given stationary point corresponds to a 
maximum, a minimum, or an inflection point. 

Actually, the search for roots of the polynomial 
f (y )  can be somewhat simplified. First, as already 
demonstrated, y can be no smaller than Yrnin and 
no larger than either y(ln~) or y(2n~), whichever is 
the smaller. Second, one can apply Descartes' 
rule of signs [16] to f 0 ' )  to immediately deduce 
that, since both k and B are positive, there can 
be, at most, three roots that are both real and 
positive. 

Our interest in this work is primarily in the 
behaviour of the system upon extension, i.e., when 
e >~0; its characteristics under compression, for 
which e < 0, will not be considered in detail. For 
e > 0, it is a simple matter to show that f(Ymin) < 0 
and f(y(X)m~x) > 0. In other words, at minimum Z 
(for which r = 0), an incremental increase of Z 
would cause U to decrease. Similarly, at the 
maximum value of Z that is physically possible 
(for which r = R/2), an incremental decrease of 
Z would also cause U to decrease. On this basis, 
one can conclude that if only one root exists 
within the range Ymin < Y < YOm~), that root must 
correspond to a minimum of the function U(r, r). 
Roots for which y >~y(2n~) are not of interest, as 
discussed above. In addition, if three roots exist 
within this same range of y ,  then, except for special 
cases in which one or more of the roots may 
represent inflection points, the roots having the 
lowest and highest values o f y  correspond to energy 
minima, and the root at the intermediate value of 
y corresponds to an energy maximum.The limiting 
case, for which there exist three roots,two of which 
are equal, consists of an energy minimum that 
corresponds to the distinct root, and an inflection 
point that corresponds to the two roots of equal 
value. Depending upon the relative values of k, B, 
and ~7, the situation for compression of the system 
is somewhat more complex, but, as indicated 
above, is not considered here in detail. 

Two particular cases will be considered here, 
i.e., when k = 1 and when 0 < k <  1. The first 
corresponds to the situation in which all three 
springs are identical, and is the case originally 
considered by Hirth [13]. The second involves a 
weakening of the inner atomic bond (its maximum 
well depth being k times that of each of the two 
outer bonds), which can be regarded as a cohesion 
effect such as that which may occur in a real 

system because of the participation of a solute 
atomic species in the cracking process. Thus, 
comparison of results obtained from the two cases 
provides some insight into the manner in which 
such embrittling atomic species can affect bond 
breaking as a crack tip propagates through a lattice 
by kink motion. 

3. Application of the model to special cases 
3.1. Three ident ica l  bonds: k = 1 
The case for which k = 1, which corresponds to a 
"pure" crystal, is particularly simple. For this 
special case, one can factorize Equation 14 to 
obtain 

(v 3 - - a ) f y  3 - - ~ y  + B )  = 0, 

so that the sixth-degree polynomial is reduced to 
two polynomials, each of degree three. The only 
real positive root o f y  3 - -B  = 0 is 

Yl = BU3, (15) 

with Yl being a real, positive root, since B is 
positive (after Equation 7). The roots of the 
polynomial y3 --By + B = 0 canbe easily deduced 
using Cardan's formulas. One thus finds that, for 
B t> 27/4, there exist two physically acceptable 
roots of this latter polynomial; these can be 
expressed in the following form: 

and 

where 

Y2 = 2 cos (16) 

Y3 = 2 cos , (17) 

= COS -1  - -  

At the lower l imit ,  when B = 27/4, 

Y2 = Y 3  = 3/2. 

Finally, one can show that no real, positive roots 
of the polynomial y 3 _ B y  + B  = 0  exist for 
B < 27/4�9 

The nature of the various stationary points of 
the function U follows immediately from the 
reasoning presented in Section 2. The results thus 
obtained are summarized in Table I. The Zi values 
are related to the respective values of  Yi (with 
i = 1, 2, 3) via Equation 10. Similarly, the Ui 
values are related to the respective values of Yi 
via Equation 6, with k = 1. The lower bound of 
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T A B L E I Properties of stationary points of U, for k = 1, along the line r~ = r2 and within the range exp (-- r/) ~< 
Yi ~< 2, with i = 1, 2, 3. "Min", "Max" and "Infl" denote minimum, maximum and inflection points, respectively, in 
the variation of Uwith Z for given e value. Expressions fory i are given in Equations 15 to 17 

Range of B values Y ~ Y 2 Y 3 Relative Z values Relative U values 

1 ~< B < 27/4 Min * * - - 
B = 27/4 Min Infl Infl Z1 > Z2 = Z3 UI < U2 = U3 
27/4 < B < BG']" Min Max Min Z1 > Z 2 > Z 3 U~ < U 3 < U2 
B = B  G Min Max Min Z1 > Z~ > Z 3 U~ = U 3 < U~ 
B G < B < 8  Min Max Min Z 1 > Z  2 > Z  3 U~ < U  I<U~ 
B = 8 Infl Infl Min Zl = Z2 > Z3 U 1 = U~ > U3 
B > 8 ~ $ Min - - 

*No real values for either y~ or y 2 exist within this range of B, 
*B G = 6.88. 
:~Both Yl and Y2 are greater than 2 within this range orB, for which the system is unstable with respect to fluctuations 
about the line rl = r2, as discussed in Section 2. 

B (i.e., B = exp (--  37/)) corresponds to complete 

compression of  the system to R = 0, that is, to 
e = - - l .  

The results obtained thus far, particularly those 
presented in Table I, can now be easily applied to 
determine the response of  the four-atom chain to 
expansion under the influence of  an externally 
applied force. However, one fact that  is now 
obvious is that  even for this very simple physical 
system, the mathematical  analysis is relatively 
involved, and the behaviour o f  the system is 

correspondingly complex.  
Consider, then, what happens as equal and 

opposite forces are applied to the two end atoms 
of  the chain. In this regard, it is useful to observe 
what happens as the system undergoes a complete 
cycle of  deformation,  i.e., beginning from the 
stable configuration (with no applied forces), then 
pulled apart  to e -+  0% and then allowed to come 
together again to the stable configuration. It is 

convenient, along these lines, to consider r6gimes 
of  the parameter  B (which, as noted above, is a 

direct measure of  e). 
(a) exp (--  3r/) ~< B < 1. This r6gime is not  o f  par- 
ticular interest. The only real root  is y ~ and for this 
range of  B the system is in a state o f  compression. 
For  this root ,  one can show that all three bonds 
maintain equal strain as B is varied. The potential  
energy U is a monotonical ly  decreasing function o f  
B within this range. 
(b) B = 1. The system exists in its stable configur- 
ation at this value o f  B. There remains only one 
real root,  Yl, which characterizes the system at 
B = 1. One can show that,  for this particular value 
of  B, none o f  the bonds are strained, so that the 
system is in its lowest possible energy state, i.e., 
U =  --  3D. 

3. 1.1. Elongating the system 
(a) 1 < B < 27/4. As the system is slowly stretched 
within this range the atomic configuration remains 
described by  the one real root,  Yl. 
(b) 27/4 ~< B < Ba. For values of  B within this 
range (the significance o f  BG to be discussed below) 
three real roots appear. As can be seen from Table I, 
an inflection point  o f  U appears at B = 27/4 at 
root  Yz = Y3; and then a maximum occurs at root  
Y2 and a minimum at root  Y3 when B is increased 

beyond this value but still within the stated 
r~gime. Within this range of  B values, the two 

minimum energies satisfy the inequality U1 < U3. 
Consequently, root  y l would still be the most 
stable configuration if  thermal activation were to 
permit  occupancy o f  both  states; the stable state 
consists o f  three equally strained bonds. 
(c) B = B a.  The parameter  BG is defined as the 
value of  B for which Ui = U3. Hence, for this par- 
ticular value of  B, the Griffith condit ion for revers- 
ible crack extension in the absence of  a kink barrier 
is satisfied, The system is in local equilibrium rela- 
tive to reversible crack extension, which means 
that, if the kink barrier were to be overcome by 
thermal fluctuations (such that the kink would 
extend by  one atomic distance), the work done by 
applied forces would be exactly equal to that 
required to create an atomic increment of  surface 
area. The magnitude o f  BG was obtained using 
an iterative procedure,  and it was found that 
BG = 6.88. The kink barrier, U2--U~, computed 
at the Griffith level, was 0.000894D. The system 
itself remains characterized at Be by  root  y~ with 
the energy maximum existing at y= and the other 

minimum at Y3- 
(d)  Be < B < 8. The system is still characterized by  
three roots. The energy maximum aty2 persists as 
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well as the minima at Yl and Y3. Now, however, 
there is a net driving force for crack propagation, 
since U3 < U1. An effective kink barrier against 
crack propagation, U2 -- U1, persists in this region, 
and irreversible crack propagation by kink motion 
can occur, within this r6gime,via thermal activation. 
(e) B = 8. At this point, the minimum that had 
existed at root y 1, noting that y 1 = 2 at this value 
of B, now becomes an inflection point, which 
coincides with root Y2 and is characterized by 
energy - 2 . 2 5 D .  The energy minimum at root Y3 
still exists, however, and has value of - 2 . 2 7 D  at 
this value of B. There is now no kink barrier, and 
the system should relax into this minimum-energy 
configuration, i.e., from root Yl to Y3 (withy3 = 
1.236 at B = 8). This change is made at fLxed B 
(i.e., fixed e) so that the internal energy of the 
system is reduced by an amount Ei(~ = 0.02D with 
no external work being done by the forces applied 
to the end atoms. The process corresponds now to 
athermally surmounting the kink barrier against 
crack propagation, with the irreversible energy Eilrr 
being dissipated thermally in the process. It can be 
seen, from Table I, that when the system relaxes 
from Yl to Y3, the value of Z is reduced. This 
corresponds to an abrupt increase of the strain of 
the inner bond as the two outer bonds move closer 
to their unstrained conditions. For example, for 
the special case considered by Hirth [ 13], for which 
r /=  5, the value of Z1 a tB  = 8 was 0.139 which 
was reduced, at B = 8, to a Z3 value of 0.0424, 
which corresponded to a strain variation of the 
inner bond from its initial value of 0.139 to a new 
and substantially higher equilibrium value of 0.331, 
corresponding to the bond-breaking process. This 
particular broken bond has not yet progressed to 
the point at which it contributes fully to the 
equilibrium surface energy. 
(.f) B > 8. As the system is stretched further, the 
atomic configuration remains in the state charac- 
terized by Y3, i.e., the "broken-bond" state. The 
roots Y l and Y2 are greater than 2 and would 
correspond to constrained minima, i.e., as measured 
along the path rl = r2. However, in this range of 
y ,  as discussed earlier, the system is unstable with 
respect to variations about the line rl = r2, and 
would progress toward an equilibrium state for 
which rl ~ r 2 .  One can show that y ~  1 as 
B ~ ~,  which corresponds to the two outer bonds 
approaching an unstrained state (i.e., Z ~ 0), with 
the inner bond being virtually entirely broken. 
Of course U ~ - - 2 D  as B ~ o %  in which case 
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the broken bond does contribute fully to the 
equilibrium surface energy. 

Consequently, for elongation of the system, 
the net change of potential energy of the system 
in going from B = I  to B ~ o o  is jus tD ,  which 
corresponds to the energy of the broken inner 
bond and simulates the surface energy created by 
kink motion. However, the net work done by the 
externally applied forces is higher, i.e., D + Ei(rlr ), 
where Ei(lr ) is a positive quantity equal to the 
negative of  the potential-energy change that 
occurred when relaxation of the system took 
place at B = 8. The energy Ei(~ is a measure of 
the irreversibility of the bond-relaxation process. 

3. 1.2. Healing the broken bond 
Next, consider what happens when the procedure 
is reversed, and the system is allowed to come 
together starting from B ~ ~o. The system is initially 
in state Y3, which was its state after elongation 
had been completed. As before, pertinent r~gimes 
of B are considered (as delineated in Table I). 
(a) B > 8. The system is in state Y3 (with Y3 < 2). 
(b) B = 8. The system is in its energy minimum at 
root Y3, but Yl and Y2 now are equal and consti- 
tute an inflection point. 
(c) BG < B < 8. The system remains in its energy 
minimum at Y3, but now there exists another 
minimum at Yl and a maximum at Y2. Here 
U 3 ~ U  1 s o  Y3 remains at the lowest-energy 
configuration. 
(d) B = B o. Here Yl and Y3 both correspond to 
energy minima and Y2 corresponds to a necessary 
maximum. Again, U1 = Ua and the system is 
in the same quasi-equilibrium configuration for 
reversible extension as when the state was being 
elongated. 
(e) 27/4 < B < B~. Again, Yl and ya correspond to 
energy minima and Y2 corresponds to an energy 
maximum. Now U1 < Ua and there is a net driving 
force for crack healing. The effective kink barrier, 
U2 -- Ua, can be overcome, in an irreversible healing 
process, by thermal activation. 
(f)  B = 27/4. Roots Y2 and Y3 are now equal and 
constitute an inflection point, and a minimum 
now exists at y 1. In a way analogous to that seen 
in the elongation process at B = 8, the system is 
supposed to fall from the inflection point at Y3, 
which is characterized by energy --2.333D, into 
the minimum at Y l, characterized by energy 
-- 2.335D, at this fixed value of B. As a result, the 
strain of the two outer bonds increases as healing 



of the broken inner bond is partially accomplished. 
For the special case originally considered by Hirth 
[13], where ~ = 5, the strain associated with each 
of the two outer bonds increases from 0.081 at Y3 
to 0.127 a ty~,  which corresponds to a decrease of 
strain of  the inner bond from 0.220 to 0.127. The 
accompanying change of potential energy of the 
system is -~.(2)~lrr, where ~'irrP(2) is a positive quantity 
equal to 0.002D, and is thus relatively small 
compared to that, Ei(~r ), for bond breaking. This 
process corresponds to athermally surmounting 
the effective kink barrier against crack healing, 
with the irreversible energy increment, E'(2)zrr, being 
dissipated thermally. 
(g) 1 <~B<27/4. As B is further reduced, the 
system remains in state y~, and the potential energy 
.decreases until the unstressed equilibrium configur- 
ation is reached at B = 1, for which U = -- 3D. 

Thus, when the broken inner bond is healed by 
going from B ~ oo to B = 1, the potential energy 
of the system changes by - -D,  which corresponds 
to the energy gained in healing the broken inner 
bond, or, equivalently, to the removal of surface 
energy. However, the net external work done 
by the externally-applied force is higher, i.e., 
- D  + ~.(2)~r~, with -~,P(2) being a measure of  the 
irreversibility of the bond-healing process. The net 
amount of  work done by the externally applied 
force, in going from B = 1 to B -+ oo and then back 
to B = 1, is not zero, but instead is P.(1) + ~.(2) ~l r r  ~ i r r ,  
which is the net energy change associated with the 
irreversible nature of  the entire breaking-healing 
cycle. 

The kink-barrier energies U21 = Uz--U1 and 
U23 - U~ - U3, for the case k = 1, are plotted in 
Fig. 2, as a function of B. These are shown over 
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Figure 2 Variation of kink-barrier energies with lattice- 
strain parameter, B, for the case k = 1. The barrier against 
crack extension is U2~ and that against crack healing is 
U23. 

the entire range of  B, that is, 27/4 ~<B ~< 8, for 
which such barriers exist. Of course, U21 and U23 
are the barriers against bond extension and healing, 
respectively. The decrease of U21, as well as the 
increase of  U23, with increasing B, are both demon- 
strated. The barrier U23 is zero at B = 27/4, 
whereas U21 is zero at B = 8. In addition, the 
magnitude of U23 at B = 8 is simply Ei(r~r ), whereas 
that of  U=~ at B = 27/4 is Ei(]~. 

Also illustrated in Fig. 2 is the pronounced 
asymmetry between the magnitudes of  U2~ and 
U2a. This asymmetry is a significant feature of this 
model and will be discussed in greater detail in 
Section 4. 

3.2.  Weakened  inner b o n d :  0 < k  < 1 
For values of k within the range 0 < k < 1, roots 
of  Equation l4 can, unfortunately, not be 
extracted by analytical means. Nevertheless, some 
general properties relative to the nature of  the 
roots can be assessed by straightforward, albeit 
tedious, methods. These procedures are outlined 
in Appendix 2. 

The following results are of  particular interest: 
(a) Within the subrange of k values 0 < k < 

125/128, there exists only one root of Equation 
14 within the allowed range of y discussed in 
Section 2. That root corresponds, of  course, to an 
energy minimum. 

(b) Within the subrange 125/128 ~<k ~< 1, the 
situation is more complicated, and there exist 
three roots for some values o f B  > 0. At k = 125/ 
128, two roots exist for some values ofB > 0. The 
nature of  these roots is as discussed in Section 2. 

A consequence of  Result a is that when the 
system is elongated from its equilibrium configur- 
ation, for which B = 1 and U = -- (2 + k)D, out 
to B ~ 0% for which U = -- 2t9, it remains charac- 
terized by that same root for the entire range ofB.  
Consequently, no irreversible change takes place, 
as occurred for the case k = 1, and the net work 
done by the externally-applied force is exactly 
equal to the increase of  potential energy, that is, 
kD, which, of  course, is the energy of the broken 
bond. Similarly, when B is taken from a large value 
approaching infinity, back to a value of unity, the 
system again remains characterized by that same 
root over the entire range of B. For any given 
value of B, the corresponding value of y is the 
same as that which had existed at that same value 
of  B during elongation. Again, no irreversible 
change takes place, and the work done by the 
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externally applied forces is -kiD.  Consequently, 
the net work done by the external forces, in first 
expanding the :system and then healing the broken 
bond, is exactly zero. 

For values of k within the range 125/128 ~< 
k ~< 1, activation-energy barriers exist for certain 
values ofB.  A method for actually evaluating these 
values of B, for a given value of k, is presented in 
Appendix 2. (The case k = 1 was considered in 
detail above, using analytical methods.) 

One special case is illustrated in Fig. 3. Here, 
the barriers U21 and U23 are plotted as a function 
of k, with the parameter B being fixed at the value 
B = 7 .  It is clear that U21 decreases and U23 
increases as k decreases. Moreover, for this case, 
U2~ vanishes at k = 0.993. One implication of this 
result is as follows. If the system were to be held 
fixed at B = 7, and the value of k were to be 
reduced from unity to some lesser value, say 
through the influence of a foreign atomic species, 
then, when k has decreased to a value of about 
0.993, the barrier against bond extension would be 
zero, and the inner bond would spontaneously 
extend, the potential energy of the system dropping 
by an amount equal in magnitude to the barrier 
height U23 for this value of k, which is seen from 
Fig. 3 to be about 0.004D. One can show that, for 
the special case where ~7 = 5 (considered by Hirth 
[13]), the strain of the inner bond increases from 
0.15 to 0.27 when this spontaneous change takes 
place. 

4. Discussion 
The simple model developed in this work has 
features that are characteristic of actual physical 
systems and that may aid our understanding of 

O 
o 
o 

o ~_ U23J 
d~a , 

t a . l~q .  
Z ~  

ta~ 0 

7 0.993 0.994 0.995 0.996 0.99 0'.998 0.999 ].000 
A 

Figure 3 Variation of kink-barrier energies with k for the 
case B = 7. The barrier against crack extension is Ual and 
that against crack healing is U23. 

crack propagation in such systems. Work by 
Sinclair on silicon [4] provides one basis for com- 
parison. In computer simulation, he found a two- 
dimensional lattice-trapping barrier for forward 
crack motion of about 0.25D (in our notation), 
but estimated a barrier reduced by a factor of ten 
for a crack with widely-spaced kinks, or about 
0.025D. This result compares favourably with 
the Morse-potential estimate of 0.02D. Estimates 
of the bond-breaking relaxation, using various 
potentials [17], indicate that the Morse potential 
may be too "soft", with the result that the bond 
strain and the barrier for kink propagation may be 
overestimated in the present approach. On the 
other hand, the present model almost certainly 
overestimates the compliance of the surrounding 
medium for an actual kink, which would tend to 
compensate for the potential [13]. Thus, the 
agreement with the results of Sinclair [4] is 
within rough theoretical expectation and may be 
representative of the degree of approximation of 
the real physical situation. 

With the above provisos, the present results 
suggest several features which have not been 
revealed by previous models of crack propagation. 
Two-dimensional LTB calculations generally reveal 
nearly symmetric barriers for cracking and healing. 
The present kink-barrier calculations, while 
revealing a persistent barrier for crack extension 
or healing in the pure-crystal case, show a marked 
asymmetry in the magnitudes of the barriers, with 
that for healing being significantly larger than that 
for extension over most of the range of B for 
which barriers exist. 

Another important aspect of this model is that 
the bond-breaking process is completely reversible 
when the middle bond has been sufficiently 
weakened, with the kink barriers against both 
crack extension and healing being eliminated. 
Indeed, this general behaviour was found to be 
relatively insensitive to the degree of weakening 
and persisted over a relatively broad range of k 
values, i.e., 0 < k <  125/128. This simple model 
may help to explain the action of certain foreign 
atomic species (for example, metalloids on grain 
boundaries of an intergranularly fracturing metal) 
in enhancing crack propagation. This idea has been 
alluded to qualitatively in the analogous situation 
of  reduction of kink-formation energy for a dis- 
location overcoming the Peierls barrier [18-20] ,  
where the solute atom is supposed to elastically 
disrupt the local periodicity of the Peiefls con- 
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figuration. The present work suggests that the kink 
barrier is reduced for very weak solute effects 
(125/128 ~<k< 1) but completely removed for 
stronger effects. The attendant reduction of the 
energy of crack propagation in the present model 
would suggest that solutes enhance decohesion of 
metal-metal bonds at the crack tip, with enhance- 
ment of crack propagation by kink motion occur- 
ring as a result. Of significance with respect to 
current theoretical considerations of such effects 
[21-24] ,  the present model suggests that a solute 
which produces only a minimal reduction in 
equilibrium surface energy nevertheless suffices 
to completely remove the trapping barrier. 
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Appendix 1 : Some properties of the 
general potential-energy surface 
Most of the analysis presented in the text is 
concerned with potential energy variations for 
which the value of y (after Equation 10)does not 
exceed 2. Some generalizations of this analysis are 
presented, here, together with application to a 
specific example. This procedure will also help 
clarify some of the results developed in the text. 

We thus define 

Xi = exp (r~Zi), (A1) 

where 

z~ = ( n - r ~ ) / r ~  (A2)  

with i = 1, 2. Clearly, Z~ is the strain associated 
with bond i. If ra = r2 ,  then ra =r2  = r ,  Z~ = 
Z2=Z (after Equation l l ) ,  and x l = x 2 = y  
(after Equation 10). Combining Equations 1, 2, 7 
to 9, A1 and A2, we obtain 

g = DB -~ [k(x~x~ - 2Bx~x~)  

+ B 2 ( x i  2 - -  2 x i ~  + x ~  2 - -  2x~t)]. 
(A3) 

Equation A3 reduces to Equation 6 for bond- 
length variations constrained to take place along 
the line ra = r2. 

Equation A3 provides a general description of 
potential-energy variations for all values of xl  and 
x2 greater than zero. However, rather than carry 
out a detailed analysis of properties of this equation, 
we shall simply consider one specific example, 
namely, that for which k = 1 and B = 7. (The 
example depicted in Fig. 3 pertains to this same 
value of B.) 

In Figs 4 to 6, the potential-energy "surface", 
defined in Equation A3, is plotted for this special 
case, as a function of xl  and x2 for various ranges 
of values of these two parameters, as well as for 
various orientations of the (xa,x2, U) co-ordinate 
axes, relative to the observer. In each of Figs 4 
to 6, that portion of the potential-energy surface is 
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Figure 4 A view of the potential- 
energy surface (after Equation 
A3) f o r B = 7 a n d k =  1. 
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Figure 5 A view of a smaller 
portion of the potential-energy 
surface shown in Fig. 4, illus- 
trating the two energy minima 
existing along the line x 1 = x2. 

illustrated that is bounded by the "cube" defined 
by the segments of each of  the co-ordinate axes 
shown. A number of important features relative 
to bond extension can be deduced from Figs 4 
to 6, as now discussed. 

First, the range of xl  and x2 covered in Fig. 4 
is relatively large, extending well into the r6gime 
for which the quantity y,  treated in the text, is 
greater than 2. Indeed, if we follow the behaviour 
of U along the line x 1 = x2, it can be seen that its 
variation about this line is generally consistent 
with Equation 3, that is, for small y ,  U increases 
about the line xl  =x2 ,  whereas for larger values 

of y (specifically, y > 2 ,  after Equation 3), U 
decreases about this line. 

The "fine" structure of the potential-energy 
surface, that exists along the line xl  =x2  and 
within the regiony < 2, cannot be distinguished in 
Fig. 3. Such structure, which for this special case 
consists of two energy minima and an energy 
maximum (see Table I), can, however, be resolved 
through a closer examination of the pertinent 
portion of the energy surface. Towards this end, 
consider Figs 5 and 6, noting first that the only 
difference between them is the position of the 
observer relative to the co-ordinate axes. Note also 
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Figure 6 The same potential- 
energy surface shown in Fig. 5, 
but viewed from a different 
position. 



that the energy range covered along the U-axis 
in Figs 5 and 6 is quite small compared to that 
covered in Fig. 4. The energy barriers against bond 
extension and healing are visible, particularly in 
Fig. 5, and the increase of potential energy about 
the line xl  = x2 can clearly be seen. 

Appendix 2: Properties of stationary 
points of U for  0 < k  < 1 
Some properties of the stationary points of the 
total potential energy, U, are determined for the 
case in which the inner bond is weakened, i.e., 
0 < k < 1. Only those values of y are considered 
that are real and lie within the range 0 < y  ~< 2. 
(Actually, the minimum value of y is exp (--r  1), 
as indicated in the text.) 

For the sake of convenience, we set A --B -1 
and/ - -  k-*, in which case Equation 14 becomes 

AZy 6 - - a y  4 + ] ( y  -- 1) = 0. (A4) 

One can readily show, from Equation A1, that for 
given values o f ]  and y,  the quantity A is given by 

A = [y +- (y2 --41y + 4i)v2]/(2ya).  (A5) 

One can use Equation A5 to show that, for y 
restricted to the range 0 < y  ~< 2, real values of 
A exist only within the subrange 

- (2) 
0 < y ~ Yma=, (A6) 

where 
y(dL - 2[] - q~ - / ) ~ / q .  (A7) 

One can use Equations A6 and A7 to express the 
acceptable range o f y  in terms of k rather than/', 
i.e., 

O<y<~(2 /k ) [1  --(1 - -k)W].  (A8) 

In addition, it follows, from Equation 7, that 
A > 0 ,  so that only those values of A, denoted 
as A+ and A_, are of interest, where, using 
Equation A5, 

A+ -= [y + Cv 2 --4/.y + 4/")'/2]/(2ya), 

0 <Y ~Yma~-- (z) (A9) 
and 

A_ - [y _ ( y2  --4/.y + 4/")1/2]1(2y3), 

1 I << .,(2) (A10) <"Y ">- ymax- 

The specific values of y for which Equation A4 
is satisfied can be determined by plotting, for a 
given value of/' > 1, the quantities A+ andA_ as a 
function o f y .  Then, for a given value Ao of A, the 
corresponding roots of Equation A4 are the inter- 
sections of the curves A+ and A_ with the straight 

lineA =Ao.  Thus, by examining the manner in 
which A+ and A_ vary wi thy ,  we can determine 
the number of such intersections, for given values 
of ] .  For example, it is clear that Equation 14 has 
exactly one root within the range of y given by 
Equations A6 or AS, for all B > 0 (the minimum 
value of B of interest actually being exp (--3r/)) 
and for all 0 < k <  1, if and only if, A+ is a 
monotonically decreasing function of y on its 
domain and A_ is a monotonically increasing 
function of y on its domain. Consequently, we 
shall next examine the manner in which A+ and 
A_ vary withy on their respective domains. 

First, we differentiate Equation A9 with respect 
to y to obtain 

dA +/dy = _ y - 4  [y + (y2 _ 5jy + 6j)/ 

(y2 _ 4fy + 4])1/2], (AI l) 

where the fight-hand side of Equation Al l  is 
undefined at the upper  limit of the range of y 
stated in Equation A9. Now, 

y2 _ Sly + 6] = y= -- 4/'y + 4/" +/'(2 - -y) ,  

(A12) 

and it is clear that the right-hand side of Equation 
A12 is positive for y within the range stated in 
Equation A9. Consequently, 

dA+/dy < 0 (A13) 

within the stated range of y ,  so that A+ is a 
monotonically decreasing function of y within 
this range. 

Next, we differentiate EquationAl0 with 
respect to y to obtain 

dA_/dy  = y - 4 [ _ y  + (y2 -- 5jy + 6])/ 

@2 --4jy + 4/.)rE], (A14) 

where the right-hand side of Equat ionAl4 is 
undefined at the upper limit of the range of y 
stated in EquationAl0. Thus, we must examine 
the magnitude of 

yZ _ 5]3, + 6/. (A15) 

relative to that' of  

y(y2 _ 4]y + 4]) u2 (A16) 

over the domain o f y  covered by the function A_ 
and for all/. > 1. Towards this end, we calculate 
the square of Expression A15 minus the square of 
Expression A16 and thus obtain the quantity/.g(y), 
where 
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g(v)  ~ (6 - -  57)2]. Jr" 8y 2 - -  6y 3 , (A17)  

which is of interest to us within the domain of 
y covered by A_. It is clear, for example, that 
g(1) = ]. + 2 and go, -+ ~) ~ -- oo. Similarly, it 
follows from Equations A7 and A12 and from the 
original definition of g(y), that g(y(m~2)x)>0. 
Consequently, g(y), always has at least one root 
greater thany(2m~ax ) . By Descartes' rule of signs [16], 
the function gO') can have at most three real and 
positive roots of y .  Therefore, either gO') > 0 over 
the entire domain of y for the function A_ or gO') 
has two roots within this domain. The limiting case 
occurs when the value of j is such that gO') has 
two equal roots within this domain. The condition 
for equal roots is that the discriminant of gO') be 
zero. Before evaluating this discriminant, we make 
the change of variable 

w =- 6 - - 5y  

in which case gO') becomes 

g(Y) = l@s [6w 3 + (125].--68)w 2 

+ 168w + 144]. (A18) 

Following Uspensky [25], the discriminant, dx, of 
the right-hand side of Equation A18 is 

A = -- 576(1-~2s)a(t 3 -- 49t 2 -- 4536t + 232560), 

(119) 
where 

t ~ 125].--68. (A20) 

The three roots of the cubic polynomial in t in 
Equation 119 are t = - - 6 8 ,  57, and 60. From 
Equation A20, it is found that the corresponding 
values of ]. are] = 0, 1, and 128/125. Consequently, 
it readily follows that EquationAl9 can be 
expressed as 

-- T~-~ j V -- 1)(j - lx~2ss). (121) 

On the basis of the foregoing analysis, it is con- 
cluded that go,) has exactly one root (necessarily 
greater than y(2r~) ) i f ]  > 128/125, three roots, two 
of which are equal, for the limiting case of]. = 128/ 
125, and three distinct roots if 1 < ] . <  128/125. 
In the last case, two of the roots lie between 1 and 
y(2m~)). For the limiting case of]  = 1, g(y) has three 
roots, two of which are equal. Therefore, for 
j > 128/125, the right-hand side of Equation A14 
does not change sign within the domain of y for 
which A_ is defined (after Equation A10). Conse- 
quently, for this range of j and this entire domain 
of y ,  go,) > 0, and since, within this range of y,  

j2 _ 5jy + 6/' > 0 (after Equation A12), it follows 
that dA_/dy > 0  under these same conditions. 
Thus, for ]. > 128/125, i.e., 0 < k < 125/128, there 
exists only one root of Equation 14 within the 

~<y~,=. From the discussion presented range 0 < y (2) 
in Section 2 it follows that this root must corre- 
spond to an energy minimum. 

The situation for which 1 <]. ~< 128/125, i.e., 
125/128 ~<k< 1, is somewhat more complicated 
and will not here be analysed in detail. We do note 
that, for some values of B > 0, Equation 14 has 
two distinct roots for ].= 128/125 and three 
distinct roots for 1 <] .<128/125 ,  within the 

_<, (2) range 0 < y  "~ymax. The relevant values of B could 
be readily determined, for given ]., as follows. The 
corresponding A values are those that exist between 
the relative maximum and minimum of A_ that, 
in turn, exist for 1 < ] . <  128/125. These are 
obtained by solving the expression g o , ) =  0 (see 
Equation A18) and substituting the result into 
Equation A10, Of course, for the limiting case, 
]. = 128/125, go,) has one distinct root within the 
range 0 < y  ~<y(~n~ ) with two roots for Equation 
14 existing within this allowable range of y.  The 
nature of these roots (i.e., whether they corre- 
spond to maximum energy, minimum energy or 
an inflection point in energy) is as discussed in 
Section 2. One example, pertinent to this range of 
k, is that presented in Section 3, centred around 
Fig. 3. 
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